71 research outputs found

    Force Controlled Piezoelectric Fiber Press

    Get PDF
    The study of the properties of paper in in the micro scale requires the use of devices on the same dimensional order. Paper fiber bonds, the construction unit of paper sheets, can be manufactured, manipulated and tested thanks to a variety of micro actuators. In the manufacturing process of paper fiber bonds, a tool able to press the fibers together is paramount, along with a force control scheme that can guarantee an acceptable performance from the actuator in question. This thesis proposes an open-loop force control technique for a piezoelectric stack actuator, consisting of the compensation of the hysteresis and creep nonlinearities and vibrations. The hysteresis compensation is based on model inversion, resorting to the Prandtl-Ishlinskii method for modeling static hysteresis. Creep compensation, on the other hand, consists of an inverse multiplicative structure, meaning that no model inversion is required and therefore simplifying the process. Last, vibration is dealt with by means of an input shaping technique. The thesis starts with a literature study, followed by the discussion of the method to be implemented and the selection of the required software and hardware for the experiments, as well as the design of a custom-built test platform. The second half of the thesis begins with the characterization of the actuator and tackles the design and implementation of the control. The experimental results show that an open-loop control scheme is possible for force control of a piezoelectric actuator and proves its efficiency and convenience for micromanipulation tasks: hysteresis is reduced to less than 3 %, creep is kept under 1 % and overshoot is decreased to less than 10 % at low inputs and apparently eliminated at higher inputs. Also, the results suggest that this method can easily be extended to other types of actuators and applications, albeit certain additional issues might have to be taken into consideration

    An Adaptable Approach to Learn Realistic Legged Locomotion without Examples

    Get PDF
    Learning controllers that reproduce legged locomotion in nature has been a long-time goal in robotics and computer graphics. While yielding promising results, recent approaches are not yet flexible enough to be applicable to legged systems of different morphologies. This is partly because they often rely on precise motion capture references or elaborate learning environments that ensure the naturality of the emergent locomotion gaits but prevent generalization. This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference. Leveraging on the exploration capacities of Reinforcement Learning (RL), we learn a control policy that fills in the information gap between the template model and full-body dynamics required to maintain stable and periodic locomotion. The proposed approach can be applied to robots of different sizes and morphologies and adapted to any RL technique and control architecture. We present experimental results showing that even in a model-free setup and with a simple reactive control architecture, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot. And most importantly, this is achieved without using motion capture, strong constraints in the dynamics or kinematics of the robot, nor prescribing limb coordination. We provide supplemental videos for qualitative analysis of the naturality of the learned gaits.Comment: Accepted to ICRA 202

    On discrete symmetries of robotics systems: A group-theoretic and data-driven analysis

    Full text link
    We present a comprehensive study on discrete morphological symmetries of dynamical systems, which are commonly observed in biological and artificial locomoting systems, such as legged, swimming, and flying animals/robots/virtual characters. These symmetries arise from the presence of one or more planes/axis of symmetry in the system's morphology, resulting in harmonious duplication and distribution of body parts. Significantly, we characterize how morphological symmetries extend to symmetries in the system's dynamics, optimal control policies, and in all proprioceptive and exteroceptive measurements related to the system's dynamics evolution. In the context of data-driven methods, symmetry represents an inductive bias that justifies the use of data augmentation or symmetric function approximators. To tackle this, we present a theoretical and practical framework for identifying the system's morphological symmetry group \G and characterizing the symmetries in proprioceptive and exteroceptive data measurements. We then exploit these symmetries using data augmentation and \G-equivariant neural networks. Our experiments on both synthetic and real-world applications provide empirical evidence of the advantageous outcomes resulting from the exploitation of these symmetries, including improved sample efficiency, enhanced generalization, and reduction of trainable parameters.Comment: 8 pages, 4 figures, 7 optional appendix pages, 4 appendix figure

    An adaptable approach to learn realistic legged locomotion without examples

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Learning controllers that reproduce legged locomotion in nature has been a long-time goal in robotics and computer graphics. While yielding promising results, recent approaches are not yet flexible enough to be applicable to legged systems of different morphologies. This is partly because they often rely on precise motion capture references or elaborate learning environments that ensure the naturality of the emergent locomotion gaits but prevent generalization. This work proposes a generic approach for ensuring realism in locomotion by guiding the learning process with the spring-loaded inverted pendulum model as a reference. Leveraging on the exploration capacities of Reinforcement Learning (RL), we learn a control policy that fills in the information gap between the template model and full-body dynamics required to maintain stable and periodic locomotion. The proposed approach can be applied to robots of different sizes and morphologies and adapted to any RL technique and control architecture. We present experimental results showing that even in a model-free setup and with a simple reactive control architecture, the learned policies can generate realistic and energy-efficient locomotion gaits for a bipedal and a quadrupedal robot. And most importantly, this is achieved without using motion capture, strong constraints in the dynamics or kinematics of the robot, nor prescribing limb coordination. We provide supplemental videos for qualitative analysis of the naturality of the learned gaits.Peer ReviewedPostprint (author's final draft

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon μ\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, μμ\mu\mu or eμe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ γ, H → Z Z∗ →4l and H →W W∗ →lνlν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Standalone vertex finding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Hunt for new phenomena using large jet multiplicities and missing transverse momentum with ATLAS in 4.7 fb−1 of √s=7 TeV proton-proton collisions

    Get PDF
    Results are presented of a search for new particles decaying to large numbers of jets in association with missing transverse momentum, using 4.7 fb−1 of pp collision data at s√=7TeV collected by the ATLAS experiment at the Large Hadron Collider in 2011. The event selection requires missing transverse momentum, no isolated electrons or muons, and from ≥6 to ≥9 jets. No evidence is found for physics beyond the Standard Model. The results are interpreted in the context of a MSUGRA/CMSSM supersymmetric model, where, for large universal scalar mass m 0, gluino masses smaller than 840 GeV are excluded at the 95% confidence level, extending previously published limits. Within a simplified model containing only a gluino octet and a neutralino, gluino masses smaller than 870 GeV are similarly excluded for neutralino masses below 100 GeV

    Search for anomalous production of prompt like-sign muon pairs and constraints on physics beyond the standard model with the ATLAS detector

    Get PDF
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAMAn inclusive search for anomalous production of two prompt, isolated muons with the same electric charge is presented. The search is performed in a data sample corresponding to 1.6 fb-1 of integrated luminosity collected in 2011 at √s = 7 TeV with the ATLAS detector at the LHC. Muon pairs are selected by requiring two isolated muons of the same electric charge with pT > 20 GeV and |η| < 2.5. Minimal requirements are placed on the rest of the event activity. The distribution of the invariant mass of the muon pair m(μμ) is found to agree well with the background expectation. Upper limits on the cross section for anomalous production of two muons with the same electric charge are placed as a function of m(μμ) within a fiducial region defined by the event selection. The fiducial cross-section limit constrains the like-sign top-quark pair-production cross section to be below 3.7 pb at 95% confidence level. The data are also analyzed to search for a narrow like-sign dimuon resonance as predicted for e.g. doubly charged Higgs bosons (H±±). Assuming pair production of H±± bosons and a branching ratio to muons of 100% (33%), this analysis excludes masses below 355 (244) GeV and 251 (209) GeV for H±± bosons coupling to left-handed and right-handed fermions, respectivelyWe acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; ARTEMIS, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNAS, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MVZT, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular, from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFNCNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwid
    corecore